Significance of double diffusion for unsteady Carreau micropolar nanofluid transportation across an extending sheet with thermo-radiation and uniform heat source

نویسندگان

چکیده

The main objective of this manuscript is to glance into the assets nanoparticles in stream generalized micropolar fluid and Carreau against an intensified elongated surface. In order assess, heat mass diffusion occurrences, Cattaneo-Christov implications are also experienced temperature concentration computations. contrast prior studies, rheological attributes on non-Newtonian fluids depicted by engaging liquid that reflect a clear difference transport phenomena. By minimizing number independent factors, regulating equations transmuted non-dimensional types, then tackled numerically using RK-4 algorithm along with shooting strategy. For velocity, micro-rotation, distributions, visualization evaluation entangled flow parameters executed. It has been revealed expanding magnetic constraints enhance micro-rotation velocity. unsteadiness parameter enhances all three physical quantities, surface drag force, Nusselt number, Sherwood number.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink

The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential eq...

متن کامل

Unsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation

The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...

متن کامل

Numerical Simulation of Entropy Generation with Thermal Radiation on MHD Carreau Nanofluid towards a Shrinking Sheet

Muhammad Mubashir Bhatti 1, Tehseen Abbas 2, Mohammad Mehdi Rashidi 3,4 and Mohamed El-Sayed Ali 5,* 1 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China; [email protected] 2 Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan; [email protected] 3 Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Ma...

متن کامل

mhd boundary layer flow of a nanofluid over an exponentially permeable stretching sheet with radiation and heat source/sink

the problem of steady magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. the effect of transverse brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. the governing partial differential eq...

متن کامل

MHD Boundary Layer Flow of a Nanofluid over an Exponentially Permeable Stretching Sheet with radiation and heat Source/Sink

The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Case Studies in Thermal Engineering

سال: 2021

ISSN: ['2214-157X']

DOI: https://doi.org/10.1016/j.csite.2021.101397